WE LOVE TO DESIGN CHIPS

Public Documen[®]

POWER

Physical Implementation of CMOS Chips

Jan Ludvik ASICentrum Brno April 2024

Public Document

What Can You Expect? See a Teaser below.

- See a process of a digital chip (DoT) development from RTL to a packaged chip
- How digital code is compiled into a gate netlist
- DFT starts in the beginning of the flow
- Place gates, create clock trees and route nets
- Everything is optimized
- Everything is verified, at least twice
- Prepare data for manufacturing
- Each chip in a nice package
- Test, test and test

lic Document

About Me.

- Jan Ludvik a physical design engineer
 - UMEL FEKT VUT Brno
 - Phillips Semiconductors Standard cells development
 - NXP Standard cells development and verification
 - onsemi Test vehicle physical development and verification
 - ASICentrum Digital design physical development and verification
 - <u>jan.ludvik@asicentrum.com</u>, +420 704 972 518
 - www.asicentrum.com

ICentrum[®]

• Purkyňova 648/125, Brno 61200, Czechia

ASICentrum, EM and Swatch

RTL2GDS

Make a physical design from a code

Public Documer

You Have Digital Code, so What's next?

- What is your application?
 - Digital simulation/verification
 - Use your computer
 - Prototyping or low volume production
 - Go FPGA
 - Relatively low fixed costs
 - Relatively high price per a unit
 - Mass production
 - **ASIC** is the only way
 - Relatively high fixed costs (development, manufacturing, packaging)
 - Low price per a chip

Public Documen

RTL2GDS – Physical Design

- Inputs
 - RTL code (Verilog, SV, VHDL)
 - Technology
- Main Steps
 - Synthesis
 - Place and route
 - Verification
- Outputs
 - GDSII layout file
 - Tons of reports and logs

Prepare Your Working Tools

cādence

- Genus Synthesis, including physical synthesis and DFT
- Innovus Place and route tool
- Tempus Signoff STA
- Voltus EMIR analysis
- Joules Power analysis
- Quantus Parasitic Extraction
- Flowkit a tool framework for synthesis, PnR, STA and EMIR

Synopsys®

- DC/DCNXT Synthesis, including physical synthesis and DFT
- ICC/ICC2 Place and route tool
- Fusion Compiler Synthesis + PnR
- PrimeTime Signoff STA
- **RedHawk** EMIR analysis
- **PrimePower** Power analysis
- **StarRC** Parasitic Extraction

SIEMENS Mentor

- Calibre DRC/LVS check
- Tessent DFT
- Questa Verification

Setup Comes First!

- **Setup** = Collect all data before you start.
 - Never underestimate it, you cannot work without a correct setup.
- What you need to start a design:
 - Die or block area
 - IO ring
 - Technology node, process, metal stack
 - Physical Development Kit (PDK)
 - Stdcells and IO cells libraries + Macro (RAM, EEPROM, PLL) digital views
 - Liberty files, LEF, Netlists, GDSII layout
 - Other data, e.g. clock trees, SDC files, UPF, physical constraints

Now Comes the Synthesis.

- Synthesis converts digital description (RTL) into a gate level netlist (Verilog)
- Synthesis can also add Design For Testing (DFT)
 - Scan chains, NAND chains, *BIST
- Steps:
 - Analyze reads inputs (Verilog, VHDL, SV)
 - Elaborate Converts a code into virtual gates
 - First setup analyses with ideal cells and ideal clocks
 - (DFT) Adds DFT modules
 - Compile Converts virtual gates into real cells
 - Setup analyses with real cells timing and ideal clocks
 - **Optimize** Optimizes netlist for timing/power/leakage/area/...
- Output Netlist + scan chains description

Design For Testability (DFT), Part One - Insertion

- DFT increases the certainty of your product's reliability, efficiency, and commercial success.
- RTL code based
 - It is already present in RTL
- Injected during synthesis
 - By the synthesis tool
 - By third party tool

Place and Route. Time for a Layout.

- Converts a gate level Verilog into a layout
- Steps:
 - Floorplan
 - Cell **placement** including optimization (S)
 - Clock tree generation
 - Post-clock optimization
 - Routing
 - Post-route optimization
 - Checks and reports (Signoff)
 - Connectivity (LVS), DRC, antenna, timing, power, ...
- Output: GDSII layout file + reports

Finish the Layout to Create a Chip.

- Add instances or shapes which cannot be added in PnR
 - PCI test structures
 - Deep isolations (N-Buried, Deep N-Well, ...)
 - Seal ring structures
 - ID label shapes-
- Generate density (metal) fills,
- Export the final layout
- Extract the final SPEFs

DRC and LVS, the Most Basic Physical Checks.

- Physical verification is an essential part of a design flow.
- DRC Compare the layout to physical rules defined in the rule manual.
 - Check spacing, min/max width, distance, area, ...
- LVS Compare the design Verilog with the layout extracted netlist.
 - Check instances, pins, nets, ports and connectivity
- Other checks
 - Antenna process antenna check
 - DFM Additional, not required, DRC rules

Signoff STA. Design is Full of Clocks.

- STA Static Timing Analysis (Simply check your timing)
 - Every signal is related to some clock.
- Run Setup and Hold analyses for ALL relevant corners and modes
- Use a final layout data, if possible
- Use signoff extracted netlists (SPEF)
- Create a back annotation (SDF)

Tape-in/tape-out

Make lithographic masks from the physical design

GDSII is Good, but not Good for Masks.

• Tape-in is when the GDSII layout file is sent to start

the process of designing lithographical masks.

- Logical layers must be combined (AND, OR, EXOR, ...).
- Text labels are used to identify layers and deleted.
- Optical proximity correction (OPC)
 - Do lithographical optimizations
- A mask layout file is exported (usually OASIS format).
 - GDSII layers are converted into mask layers.

Your Design Is Not the Only One in the Reticle.

- A reticle is a substrate (glass) for the photomasks.
- Production designs are usually the only designs in the mask.
 One reticle = one mask layer.
 - Reticle size is defined by the fab.
 - Design motive (layout) is placed in the reticle many times as a matrix.
 It is called a "die".
- Test designs are placed into the shuttle (MPW)
 - Combine many different designs into one die.
- Multi Layer Multi Die reticle
 - Combine different designs and different layers into one reticle.

Run to the OASIS.

- Tape-in process can be done externally, it requires deep technology knowledge
- **Tape-out** in when the OASIS mask file is sent to create lithographic masks.
- Note: People usually say just "tape-out" instead of tape-in due to historical reasons.

Semiconductor Fabrication Plant (Fab)

Make silicon wafers

Public Documer

Lithography, the Most Difficult Thing on Earth

- CMOS chips are made by a process called a photolithography
 - Masks are used to create a motive in all layers
 - Modern mask are very expensive due to their resolution
 - A mask set for 180 nm costs ~40k USD, 40 nm 900k USD, 3 nm many millions
- Time of the whole process depends on number of process steps and the depth of implantation
 - Wafer can be done in a couple of weeks or months
- Motive is "printed" step by step
 - Other process steps are common for the whole wafer

A Wafer? Standard or With Some Flavor?

- "Lot" is a set of silicon wafers (~25 pieces) running through the fab together in one dose.
- **Production** chips are done in a "**target process**" process fully characterized for the mass production
- Test vehicles can be run also in some shifted processes
 - They are called "flavors"
 - Fast, slow, fast-N, slow-P, ...

Don't Be Lost, Use Your Wafer Map!

- The reticle is used in the wafer repetitively in a matrix.
- Some dies are partially out of the wafer.
- Some dies have different properties dependent on the **position** on the wafer.

When You Have the Needles.

- Probe the wafer using a probe card to see if the chip lives.
 - Read a chip identifier or run some tests.
- Running **tests** before packaging can save some time and money.
 - ATE (Automatic test equipment) standard tests
 - Custom test BISTs, ESD, frequency, logic response, ...
- Program OTP, flash or eePROMs.
 - Load a code or create a unique chip ID.

Packaging

Make "the Chip"

Public Documer

Saw Street

- The wafer must be cut to single dice first.
- A "saw street" (a.k.a. cut line) is a **distance between** two dice.
- This distance (~100 µm) can be used for process monitor devices
- This area (kerf) is lost when the die is cut
- Some wafers needs to be thinner
 - It is called "Wafer **backgrinding**"
 - It must be done before the sawing

Lead Frame (Not Only) For Leaders

A backbone for a package

- Holds the die
- Creates connection paths
- Defines a package
- Used material (E3, E4) defines the LF properties including the maximal temperature
- The die is glued
- Pads and LF are bonded

Wire Bonding, if Your Chip is not Flipped

- Wire bonding is a connection between a bonding pad on the die and the lead frame
 - The wire (Au, Ag , Al, Cu) is very thin (10 100 $\mu m)$
- Flip-chip does not use bonding pads nor wires there are "bumps"
 - The die is upside down

Many Different Packages to Deliver the Die

- Chip package molding is the final process of a chip manufacturing
- It is the "small black thing with silver legs" what is usually called "a chip"
- There are tons of different package types and sizes
 - Plastic, ceramic
 - Dual-In-Line, Quad, BGA, PGA, TO-3

Test

Make sure that your chip is working

Public Documen

DFT, Part Two - ATPG

- All production chips must be tested to prove they are OK
- Automatic Test Pattern Generation is a method to find an input sequence which causes an error or a failure
 - Input patterns (vectors) are generated by a tool based on the design (Verilog)
 - Different fault models can be used (e.g. "stuck-at", bridging, ...)
 - Scan-chain design (DFT) is the most common used method

Time is Money. Especially in Testing.

- Each chip is tested and it takes some time.
 - Total time needed for testing is:

 $T_{total} = N * (\overline{T_{handling}} + T_{test1} + T_{test2} + T_{testX})$, where N is number of chips

• Important: If you reduce testing time by one second, you can save 11 and half days to test one million chips.

• It save a huge amount of money.

Final Part

Products

Public Documer

Your Chips are Done. Now You Have to Sell Them.

Thank You For Your Attention

HLEDÁ SE KOLEGA HOMO TECHNICUS!

Koho hledáme

- Digital Designer
- Digital Verification Engineer
- Embedded Software Engineer
- Validation Engineer
- Backend Engineer

Co nabízíme

- Naučíte se navrhovat integrované obvody
- Praktické zkušenosti z projektů
- Být součástí týmu
- Studentské projekty
- Diplomové práce
- Pracovní doba přizpůsobená
 Vašemu rozvrhu

Other

Other Slides

Public Documer

Used Picture Sources

- <u>https://www.emmicroelectronic.com/product</u>
- https://www.asicentrum.cz/en/products-and-services/integrated-circuits-design-services-1
- <u>https://en.wikipedia.org/wiki/Optical_proximity_correction</u>
- <u>https://blog.semiprobe.com/probe-card</u>
- https://semiengineering.com/knowledge_centers/materials/fill/advanced-smart-fill/
- <u>https://sawstreet.com/public/dicing.php</u>
- https://en.wikipedia.org/wiki/Lead_frame#/media/File:TQFP_Leadframe.jpg
- <u>https://en.wikipedia.org/wiki/Wire_bonding#/media/File:07R01.jpg</u>
- <u>https://www.aemtec.com/en/technologies/flip-chip</u>

